Heat distribution and domestic hot water (DHW) system

Energy balance calculation with PHPP Version 10.4 EN

Specific

"Stūrīši" / Climate: LV0003b-Zīlāni / TFA: 565 m² / Heating: 125,9 kWh/(m²a) / Overheating: 42 % / PER: 207,3 kWh/(m²a)

Interior temperature:	19	°C	Interior temperature summer:	25	°C
Building type:	5-Multi-fa	amily house I	Apartment building		
Treated floor area A _{TFA} :	565	m²			
Number or occupants per day:	29,8	Pers			
Number of dwelling units:	28				
Annual heating demand q _{Heating} :	71153	kWh/a	Annual useful cooling dem. q _{Cool} :	47789	kWh/a
Length of heating period:	212	d/a	Length cooling period:	153	d/a
Average heating load P _{Average} :	14,1	kW	Average cooling load P _{Average} :	13,0	kW
Marginal usability of additional heat gains:	100%		Marginal usability of additional heat losses:	7498%	

Heat delivery:	
	Supply air
x	Radiators
	Underfloor heating or other panel heating
	Concrete core activation
	Split unit or similar
	Wood stove with direct heat emission
	Other

				Insid	le thermal envel	ope	
Space heat distribution			1 2 3		4	5	
Length of distribution pipes (forward + return flows)	L _H	m	220,0				
Nominal width of pipe		mm	32				
Insulation thickness		mm	2				
Reflective coating?		-					
Thermal conductivity of insulation		W/(mK)	0,035				
Heat loss coefficient		W/(mK)	0,697				
Insulation quality of mountings, pipe suspensions, etc.		-	1 - None	1 - None	1 - None	1 - None	1 - None
Thermal bridging of pipework		W/K	35,000				
Total heat loss coefficient	Ψ	W/(mK)	0,856				
Room temperature	θ_X	°C	19	19	19	19	19
Forward flow temperature	θ_{V}	°C	60	60	60	60	60
System heating load	P _{heating}	kW	33,2	33,2	33,2	33,2	33,2
Flow temperature control?							
Common pipe Heating + DHW?							
Return flow temperature	ϑ_{R}	°C	48				
Heat emission pipe	q* _{HL}	kWh/(m·a)	154				
Utilisation factor of released heat	η_{G}	-	100%				
Heat losses of heating distribution	Q_{HL}	kWh/a	54				
Heat losses of heating storage		kWh/a					
Total heat losses of heating		kWh/a					

	Outsit	ae unermai en	velope		I Olai V
1	2	3	4	5	Absolute
1 - None	1 - None	1 - None	1 - None	1 - None	
		I	I		
60	60	60	60	60	
33,2	33,2	33,2	33,2	33,2	
					kWh/a

+	kWh/a	kWh/(m²a)
1		
-		

100%

DHW useful heat

Performance ratio of space heating distribution

DHW demand for showers, per person and day (wit	h 60 °C)	litre/person/d	30,0
DHW demand others, per person and day (with 60 °	°C)	litre/person/d	10,0
Performance of drain water heat recovery (shower)		-	0%
Effective DHW demand	V_{DHW}	litre/person/d	40
Average cold water temperature of the supply	θ_{TW}	°C	15,7
DHW demand for washing machines & dishwashers	3	kWh/a	0
Useful heat of DHW	Q_{DHW}		

kWh/a kWh/(m²a)

22326 39,5

Secondary calculation for determining the DHW requirements (for non-res)

Secondary calculation: drain water heat recovery (shower)

				Insid	le thermal enve	lope		I		Outsi	de thermal en	velope		Total	/alues
DHW distribution			1	2	3	4	5		1	2	3	4	5	Absolute	Specific
Room temperature	θ_{X}	°C						-	20,0	20,0	20,0	20,0	20,0		
DHW circulation pipes or, for heat interface un	nits, forward and re	turn flows													
Common pipe heating + DHW?]							
Length of pipes (forward + return flows)	L _{HS}	m	0,0					İ							
Nominal width of pipe		mm	16					1							
Insulation thickness		mm	2					İ							
Reflective coating?		-						Ī							
Thermal conductivity of insulation		W/(mK)	0,038					İ							
Heat loss coefficient		W/(mK)	0,383					1							
Insulation quality of mountings, pipe suspensions,	etc.	-	1 - None	1 - None	1 - None	1 - None	1 - None	1	1 - None	1 - None	1 - None	1 - None	1 - None		
Thermal bridge surcharge mountings		W/K	2,000					1							
Total heat loss coefficient	Ψ	W/(mK)	#DIV/0!												
Daily operating time of circulation	td _{Circ}	h/d	24	24	24	24	24		24	24	24	24	24		
Forward flow temperature	θ_{V}	°C	40	40	40	40	40		40	40	40	40	40		
Pipes to heat interface unit?								1							
Return flow temperature	θ_{R}	°C						1							
Operating time of the circulation in winter	t _{Circ}	h/a	5042					1							
Operating time of the circulation in summer	t _{Circ}	h/a	3718											kWh/a	kWh/(m²a
Heat loss circulation pipes in winter	QZ	kWh/a													
Heat loss circulation pipes in summer	QZ	kWh/a												0	0,0
DHW stub pipes / individual pipes	•							1							
DHW temperature	θ_{V}	°C													
Exterior pipe diameter	d _{U_Pipe}	mm													
Total length of individual pipes	L _U	m													
Number of tapping points in building	n _{tapping point}	-													
Average pipe length per tapping point	L _{U, average}	m													
Tap openings per person per day		-	6	6	6	6	6		6	6	6	6	6		
Utilisation days per year		d	365	365	365	365	365		365	365	365	365	365		
Number of tap openings per year and person	n _{Tap}	Openings/a													
Heat emission per tap opening in winter	q _{Individual}	kWh/Opening													
Heat emission per tap opening in summer	q _{Individual}	kWh/Opening												kWh/a	kWh/(m²a
Heat emission from single pipes in winter	Q_U	kWh/a												0	0,0
Heat emission from single pipes in summer	Q_U	kWh/a						l							0,0
Tatalhandana at Bunna in an	0													kWh/a	kWh/(m²a
Total heat losses of DHW distribution	Q_{WL}													0	0,0
Performance ratio of DHW distribution pipes	ea, _{HL}	-												10	0%

PHPP, DHW+Distribution 22.05.2023.

Storage heat losses

		Storage type 1	Storage type 2	Buffer storage tank (only heating)	Compact unit
Selection of storage tank		0-No storage tank	0-No storage tank	0-No storage tank	0-No
Storage necessary for HP					
Solar DHW connection					
Heat loss rate	W/K				
Storage volume	litre				
Standby fraction	-				
Location of storage tank, inside or outside of thermal envelope		1-Inside	1-Inside	1-Inside	
Temperature of mechanical room	°C				
Typical storage tank temperature	°C				
Manual entry of storage temperature	°C				
Average standby heat losses storage tank	w				
Additional heat loss storage, solar system operation	W				
Possible utilisation factor of heat losses					
Annual heat losses DHW storage tank	kWh/a				
-					
Annual heat losses buffer storage tank	kWh/a				
Auxiliary calculation - heat losses through storage tank according to	EU efficiency cla	asses			1

Total energy demand of DHW

Total ellergy delitated of Dilivi		kWh/a	kWh/(m²a)
Heat losses of DHW distribution and storage	\mathbf{Q}_WL	0	0,0
Performance ratio DHW distribution + storage	$e_{a,WL}$	10	0%
Total heat demand of DHW system including storage tank	Q_{gDHW}	kWh/a 22326	kWh/(m²a) 39,5

PHPP, DHW+Distribution 22.05.2023.

				Insid	de thermal enve	lope
Cooling distribution			1	2	3	
Length of distribution pipes	L _H	m				
Nominal width of pipe		mm				
Insulation thickness		mm				
Reflective coating?		-				
Thermal conductivity of insulation		W/(mK)				
Heat loss coefficient per m pipe	Ψ	W/(mK)				
Temp. of room through which the pipes pass	θ_{X}	°C	25,0	25,0	25,0	Т
Design flow temperature	θ_{V}	°C	6,0	6,0	6,0	
System cooling load	P_{Cool}	kW				
Flow temperature control ('x' if appropriate)						
Design return temperature	θ_{R}	°C				
Annual heat absorption per m of pipe	q* _{HL}	kWh/(m-a)				
Possible utilisation factor of this heat absorption	η_{G}	-				
Annual losses of cooling distribution	Q_{HL}	kWh/a				
Performance ratio cold water distribution pipes	ea, _{HL}	-				

	Outside thermal envelope									
	Outside thermal envelope									
Ab	5	4	3	2	1					
	25,0	25,0	25,0	25,0	25,0					
	6,0	6,0	6,0	6,0	6,0					
k\										

100%

DHW heating and distribution losses in kWh/a DHW heating Distribution losses: Heating pipes Heating storage DHW circulation pipes DHW individual pipes DHW storage tank Cooling pipe Total losses 0 2 50 00 50 00 1 00 00 1 50 00 2 00 00 Energy balance calculation with PHPP Version 10.4 FN "Stūrīši" 565 m² treated floor area, Latvia

PHPP, DHW+Distribution 22.05.2023.

4

25,0

6,0

5

25,0

6,0